2007年 新潟沖地震 K-Net 観測波 解析速報

横浜国立大学大学院

楠 浩一

各地の震度

1 対象とする地震波と時刻歴

2007 年 7 月 16 日 (月) 10:13 頃発生した新潟の地震で, K-Net により観測され た加速度データの中で、いずれかの方向の最大計測加速度が 200gal を超える記録 計 8 波について,検討を行った。なお、K-Net で公開されている地震波データを、 本節では物理量に変換して用い、それ以外では、加速度記録の基線ずれを除去する ために全時間の平均値を引いたものを用いた.

K-net で公開されている各地震動の最大加速度一覧を表1に,主要動部分の時刻 歴を図 1-1~図 1-8 に示す.柏崎、信濃および安塚を除いて、最大加速度はEW方 向が卓越している。NIG018の水平成分では、特異な波形を描いている。それ以外 の地震動では、地震波形自体に問題は見受けられない。

		北緯	東経	EW	NS	UD
NIG018	柏崎	37.37	138.56	525.7	690.6	379.3
NIG019	小千谷	37.30	138.79	470.6	405.7	116.5
NIG016	寺泊	37.64	138.77	365.6	225.5	57.0
NIG021	十日町	37.12	138.75	265.5	209.8	67.3
NIG017	長岡	37.44	138.85	241.7	198.0	169.5
NGN002	信濃	36.81	138.21	183.9	208.2	54.7
NIG025	直江津	37.16	138.22	206.9	187.0	59.1
NIG024	安塚	37.13	138.44	125.0	229.7	52.4

表1 各方向計測加速度最大值一覧(cm/sec²)

図 1-1 NIG018 柏崎

図 1-2 NIG019 小千谷

図 1-3 NIG016 寺泊

図 1-4 NIG021 十日町

図 1-5 NIG017 長岡

図 1-6 NGN002 信濃

図 1-7 NIG025 直江津

図 1-8 NIG024 安塚

2 加速度応答スペクトルによる比較

図 2-3~図 2-10 に8波の東西および南北成分の加速度応答スペクトルを示す. 図中には,第二種地盤でのRt曲線を併せて示す.Rt曲線は,建築基準法で地震時 に建物が弾性応答にとどまるために必要とされている建物のベースシアー (Co=10)を表す.通常の設計では,建物の塑性化によるエネルギー吸収を考慮し てこの値を低減する(Ds).その値は,偏心等の不整形性が建物にない場合は, Ds=0.3~0.55の値をとる.

さらに、加速度応答スペクトルの比較的大きかった柏崎 NS、小千谷 EW、寺泊 EW、十日町 EW、および兵庫県南部地震の際に神戸海洋気象台と神戸ポートアイ ランドで観測された地震波(NS 成分)の加速度応答スペクトルを図 2-1 に、柏崎 NS,小千谷 EW と神戸海洋気象台と神戸ポートアイランドで観測された地震波の 比較を図 2-2 に示す.図中には第一種~第三種地盤における Rt 曲線をあわせて示 している.

図 2-1 主要4波と兵庫県南部地震での記録の比較

図 2-2 NIG018 柏崎、NIG019 小千谷と兵庫県南部地震の記録の比較

図 2-3 NIG018 柏崎

図 2-4 NIG019 小千谷

図 2-5 NIG016 寺泊

図 2-6 NIG021 十日町

図 2-7 NIG017 長岡

図 2-8 NGN002 信濃

図 2-9 NIG025 直江津

図 2-10 NIG024 安塚

3 要求曲線による比較

本節では,限界耐力計算で規定される要求曲線を用いて,地震動と被害の関係 を検討する. 図 3-3~図 3-10 に 5%および 10%減衰での各方向各地震波の要求 曲線を示す.図中には第2種地盤での要求曲線を併せて示す.図中の上横軸は, 建物の階高を 3m,等価高さを建物高さの 1/2 と仮定したときの建物全体の変形角 を示している.実際の変形角は,横軸の値/100N(N:建物階数)である.

図 3-1 および図 3-2 に減衰5,10%での柏崎 NS、小千谷 EW、寺泊 EW、十日 町 EW の要求曲線を示す.図中には弾性周期 0.3sec, Ds=0.5 での履歴曲線を併せ て示している.更に,ヘアークラック等による初期の剛性低下を考慮して,剛性 低下率 50%での履歴を示している.

図 3-1 5%減衰での比較

図 3-2 10%減衰での比較

図 3-3 NIG018 柏崎

図 3-4 NIG019 小千谷

図 3-5 NIG016 寺泊

図 3-6 NIG021 十日町

図 3-7 NIG017 長岡

図 3-8 NGN002 信濃

図 3-9 NIG025 直江津

図 3-10 NIG024 安塚

4 エネルギースペクトルによる検討

図 4-1 に柏崎 NS、小千谷 EW、寺泊 EW、および十日町 EW の入力エネルギー速度換算値 ($V_{z} = \int \vec{x}_{0} \cdot \vec{x} dt$)を示す.継続時間は,100 秒分を用いた.また,弾性応答によるエネルギー吸収量は

 $\frac{1}{2} \left(M \cdot C_{\scriptscriptstyle B} \cdot G \right) \cdot \delta_{\scriptscriptstyle Y} = \frac{1}{2} \left(M \cdot C_{\scriptscriptstyle B} \cdot G \right) \cdot \frac{\left(M \cdot C_{\scriptscriptstyle B} \cdot G \right)}{K} = \frac{1}{2} M \cdot \frac{M}{K} \cdot \left(C_{\scriptscriptstyle B} \cdot G \right)^2$

で計算される.ここで,M:総質量,C_B:ベースシアー係数,G:重力加速度, _y:降 伏変位,K:建物剛性,である.

このエネルギーの速度換算値は,

$$\frac{1}{2}M \cdot V^2 = \frac{1}{2}M \cdot \frac{M}{K} \cdot (C_{\scriptscriptstyle B} \cdot G)^2$$

より,

$$V = C_{\scriptscriptstyle B} \cdot G \cdot \sqrt{\frac{M}{K}} = \frac{C_{\scriptscriptstyle B} \cdot G}{2\pi} \cdot T$$

となる.ここで,Tは建物周期である.

図中に C_B=1.0, 0.5, 0.3 での弾性応答の吸収するエネルギーを併せて示す.V_E が各線を上回る場合は,その差分は塑性化によりエネルギー消費されると考えられる.逆に下回る場合は,建物応答は弾性に収まると考えられる.

図 4-1 主要4波の入力エネルギー速度換算値

5 速度応答スペクトルによる検討 各地震動の、最大地動加速度の大きい方向の速度応答スペクトルを図 5-1 に示す。

図 5-1 各地震動の速度応答スペクトル

6 弾塑性地震応答解析による検討

6.1 NIG018 NS

NIG018 柏崎 NS を対象に, C_B=1.0, 0.5, 0.3 の3種類の建物について弾塑性 地震応答解析を行った.解析では以下の仮定を用いた.弾性周期 0.3sec での解析 パラメータを表 6-1 に示す.

- ・ 復元力特性は武田モデル
- ・ ひび割れ耐力(Fc)は降伏耐力(Fy)の 1/3
- 降伏時剛性低下率は 0.5
- 降伏後剛性は初期剛性の 1/1000
- 減衰は瞬間剛性比例型減衰で 5%
- ・ 建物重量は 980tonf.

各ケースでのせん断力 - 水平変形関係を図 6-1 に示す .最大塑性率は C_B=1.0 で 0.9, C_B=0.5 で 4.4, C_B=0.3 で 22.1 であった.

同様に,弾性周期 0.5sec に対して,表 6-2 に示すように同じく C_B=1.0,0.5,0.3 の3種類の建物について弾塑性地震応答解析を行った.各ケースでのせん断力-水平変形関係を図 6-2 に示す.最大塑性率は C_B=1.0 で 0.8, C_B=0.5 で 2.0, C_B=0.3 で 8.4 であった.弾性周期 0.3sec に比べて被害は非常に小さくなっている.

以上のように,弾塑性解析を実施した結果,柏崎 NS 波では,弾性周期 0.3sec 程度および 0.5sec 程度の建物共に Ds が 0.5以下では塑性率 2 を超える大きな被害 が生じる解析結果となった.

		解析ケース			
		Case 1 (C _B =1.0)	Case 2 (C _B =0.5)	Case 3 (C _B =0.3)	
耐力	Fc	3201.33	1600.67	960.40	
(kN)	Fy	9604.00	4802.00	2881.20	
変形	Dc	7.45	3.72	2.23	
(mm)	Dy	44.68	22.34	13.40	

表 6-1 解析パラメータ(T=0.3)

図 6-1 せん断力 - 水平変形関係(T=0.3)

		解析ケース			
		Case 1 (C _B =1.0)	Case 2 (C _B =0.5)	Case 3 (C _B =0.3)	
耐力	Fc	3201.33	1600.67	960.40	
(kN)	Fy	9604.00	4802.00	2881.20	
変形	Dc	20.69	10.34	6.21	
(mm)	Dy	124.12	62.06	37.24	

表 6-2 解析パラメータ(T=0.5)

図 6-2 せん断力 - 水平変形関係(T=0.5)

6.2 NIG019 EW

NIG019 小千谷 EW を対象に, C_B=1.0, 0.5, 0.3 の3種類の建物について弾塑 性地震応答解析を行った.解析では以下の仮定を用いた.弾性周期 0.3sec での解 析パラメータは 6.1 で用いたもの(表 6-1)と同じである。

- ・ 復元力特性は武田モデル
- ・ ひび割れ耐力(Fc)は降伏耐力(Fy)の 1/3
- ・ 降伏時剛性低下率は 0.5
- · 降伏後剛性は初期剛性の 1/1000
- 減衰は瞬間剛性比例型減衰で 5%

・ 建物重量は 980tonf.

各ケースでのせん断力 - 水平変形関係を図 6-3 に示す .最大塑性率は C_B=1.0 で 1.3, C_B=0.5 で 3.2, C_B=0.3 で 4.6 であった .

同様に,弾性周期 0.5sec に対して,表 6-2 に示すように同じく C_B=1.0,0.5, 0.3の3種類の建物について弾塑性地震応答解析を行った.各ケースでのせん断力 -水平変形関係を図 6-4 に示す.最大塑性率は C_B=1.0 で 0.5, C_B=0.5 で 1.1, C_B=0.3 で 1.6 であった.弾性周期 0.3sec に比べて被害は非常に小さくなっている.

以上のように,弾塑性解析を実施した結果,小千谷 EW 波では,弾性周期 0.3sec 程度および 0.5sec 程度の建物共に、予測される被害は NIG018 柏崎 NS 波に比べ て小さくなった.

図 6-3 せん断力 - 水平変形関係(T=0.3)

図 6-4 せん断力 - 水平変形関係(T=0.5)

7 NIG018 柏崎 NS 波の Wavelet 変換

NIG018 柏崎 NS 波の記録は、記録中に特異な波が見受けられる。その為、Wavelet 変換 により、時間軸で周波数分解を試みる。解析には 8192Step(81.92sec、2¹³)を用いたので、 13 ランクまで分解できることとなる。分解には Mother Wavelet として B - Spline を用い、 次数は4 とした。

図 7-1 に分解結果を示す。図から、主要成分は g₅ (Nyquist frequency 3.13Hz) ~ g₈ (Nyquist frequency 0.39Hz)に属し、それ以外の成分を殆ど含んでいないことが分かる。

図 7-2 に主要成分の2階積分値を示す。g7およびg8成分が主成分で40cm程度変形して いることが分かる。

Rank	Δt (sec)	Frequency (Hz)
1	0.01	50.00
2	0.02	25.00
3	0.04	12.50
4	0.08	6.25
5	0.16	3.13
6	0.32	1.56
7	0.64	0.78
8	1.28	0.39
9	2.56	0.20
10	5.12	0.10
11	10.24	0.05
12	20.48	0.02
13	40.96	0.01

図 7-1 NIG018 柏崎 NS 波の Wavelet 変換結果

図 7-1 NIG018 柏崎 NS 波の Wavelet 変換結果

図 7-1 NIG018 柏崎 NS 波の Wavelet 変換結果

図 7-2 NIG018 柏崎 NS 波の主要成分の 2 階積分値

8 まとめ

9 謝辞

本データ解析は、防災科学技術研究所 強震ネットワーク K-Net の公開データを利用して計算いたしました。