2005 年 福岡県西方沖地震 K-Net·JMA 観測波解析速報

独立行政法人 建築研究所

構造研究グループ 主任研究員 楠 浩一

(<u>www.jma.go.jp</u>)

各地の震度

1 対象とする地震波と時刻歴

2005 年 3 月 20 日 (日) 10:53 頃発生した福岡の地震で, K-Net により観測され た加速度データの中で、いずれかの方向の最大計測加速度が 250gal を超える記録 計 7 波 (K-Net のホームページ上で表示される最大加速度による。データの最大 値と異なっている)について,検討を行った。なお、K-Net で公開されている地 震波データを、本節では物理量に変換して用い、それ以外では、加速度記録の基線 ずれを除去するために全時間の平均値を引いたものを用いた.

K-net で公開されている各地震動の最大加速度一覧を表1に,主要動部分の時刻 歴を図1~図7に示す.平戸・鎮西、前原を除いて、最大加速度はNS方向が卓越 している。FKO006 福岡の記録では、比較的長い周期の波が載っている事が見受 けられる。

		北緯	東経	EW	NS	UD
NGS001	平戸	33.36	129.54	285.457	193.679	65.2812
SAG002	唐津	33.42	129.92	267.882	271.573	281.647
SAG001	鎮西	33.53	129.88	334.813	109.512	79.3219
FKO006	福岡	33.60	130.40	211.541	275.468	125.83
FKO001	玄海	33.85	130.51	221.588	226.448	106.259
FKO007	前原	33.56	130.20	251.481	187.931	86.4849
FKO005	飯塚	33.65	130.70	170.167	180.836	126.051

表1 各方向計測加速度最大值一覧(cm/sec²)

図 1 NGS001 平戸

図 2 SAG002 唐津

図 3 SAG001 鎮西

図 4 FKO006 福岡

図 5 FKO001 玄海

図 6 FKO007 前原

図 7 FKO005 飯塚

2 加速度応答スペクトルによる比較

図 10~図 16 に 7 波の東西および南北成分の加速度応答スペクトルを示す.図 中には,第二種地盤での Rt 曲線を併せて示す.Rt 曲線は,建築基準法で地震時に 建物が弾性応答にとどまるために必要とされている建物のベースシアー(Co=10) を表す.通常の設計では,建物の塑性化によるエネルギー吸収を考慮してこの値 を低減する(Ds).その値は,偏心等の不整形性が建物にない場合は,Ds=0.3~ 0.55 の値をとる.

さらに、加速度応答スペクトルの比較的大きかった平戸 EW、唐津 NS、鎮西 EW、福岡 NS、玄海 NS、および兵庫県南部地震の際に神戸海洋気象台と神戸ポ ートアイランドで観測された地震波(NS 成分)の加速度応答スペクトルを図 8 に、平戸 EW、福岡 NS と神戸海洋気象台と神戸ポートアイランドで観測された地 震波の比較を図 9 に示す.図中には第一種~第三種地盤における Rt 曲線をあわせ て示している.

図 8 主要5波と兵庫県南部地震での記録の比較

図 9 平戸 EW、福岡 NS と兵庫県南部地震の記録の比較

図 10 NGS001 平戸

図 11 SAG002 唐津

図 12 SAG001 鎮西

図 13 FKO006 福岡

図 14 FKO001 玄海

図 15 FKO007 前原

図 16 FKO005 飯塚

3 要求曲線による比較

本節では,限界耐力計算で規定される要求曲線を用いて,地震動と被害の関係 を検討する.図 19~図 25 に 5%および 10%減衰での各方向各地震波の要求曲線 を示す.図中には第2種地盤での要求曲線を併せて示す.図中の上横軸は,建物 の階高を 3m,等価高さを建物高さの 1/2 と仮定したときの建物全体の変形角を示 している.実際の変形角は,横軸の値/100N(N:建物階数)である.

図 17 および図 18 に減衰5,10%での各地震記録で最大地動加速度が最大とな る方向の要求曲線を示す.図中には弾性周期0.3sec,Ds=0.5 での履歴曲線を併せ て示している.更に,ヘアークラック等による初期の剛性低下を考慮して,剛性 低下率50%での履歴を示している.

図 17 5%減衰での比較

図 18 10%減衰での比較

図 19 NGS001 平戸

図 20 SAG002 唐津

図 21 SAG001 鎮西

図 22 FKO006 福岡

図 23 FKO001 玄海

図 24 FKO007 前原

図 25 FKO005 飯塚

4 エネルギースペクトルによる検討

図 26 に各地震動卓越方向の入力エネルギー速度換算値($V_{z} = \int \ddot{x}_{0} \cdot \dot{x} dt$)を示す. 継続時間は,100秒分を用いた.また,弾性応答によるエネルギー吸収量は

 $\frac{1}{2} \left(M \cdot C_{\scriptscriptstyle B} \cdot G \right) \cdot \delta_{\scriptscriptstyle Y} = \frac{1}{2} \left(M \cdot C_{\scriptscriptstyle B} \cdot G \right) \cdot \frac{\left(M \cdot C_{\scriptscriptstyle B} \cdot G \right)}{K} = \frac{1}{2} M \cdot \frac{M}{K} \cdot \left(C_{\scriptscriptstyle B} \cdot G \right)^2$

で計算される.ここで,M:総質量,C_B:ベースシアー係数,G:重力加速度, _y:降 伏変位,K:建物剛性,である.

このエネルギーの速度換算値は,

$$\frac{1}{2}M \cdot V^2 = \frac{1}{2}M \cdot \frac{M}{K} \cdot (C_{\scriptscriptstyle B} \cdot G)^2$$

より,

$$V = C_{\scriptscriptstyle B} \cdot G \cdot \sqrt{\frac{M}{K}} = \frac{C_{\scriptscriptstyle B} \cdot G}{2\pi} \cdot T$$

となる.ここで,Tは建物周期である.

図中に C_B=1.0, 0.5, 0.3 での弾性応答の吸収するエネルギーを併せて示す.V_E が各線を上回る場合は,その差分は塑性化によりエネルギー消費されると考えられる.逆に下回る場合は,建物応答は弾性に収まると考えられる.

図 26 主要4波の入力エネルギー速度換算値

5 速度応答スペクトルによる検討

各地震動の、最大地動加速度の大きい方向の速度応答スペクトルを図 27 に示す。

図 27 各地震動の速度応答スペクトル

6 弾塑性地震応答解析による検討

6.1 NGS001 平戸 EW

NGS001 平戸 EW を対象に, C_B=1.0, 0.5, 0.3 の3種類の建物について弾塑 性地震応答解析を行った.解析では以下の仮定を用いた.弾性周期 0.3sec での解 析パラメータを表 6-1 に示す.

- 復元力特性は武田モデル
- ひび割れ耐力(Fc)は降伏耐力(Fy)の 1/3
- 降伏時剛性低下率は 0.5
- 降伏後剛性は初期剛性の 1/1000
- 減衰は瞬間剛性比例型減衰で 5%
- ・ 建物重量は 980tonf.

各ケースでのせん断力 - 水平変形関係を図 6-1 に示す .最大塑性率は C_B=0.3 で 1.48, C_B=0.5 および 1.0 では降伏は生じなかった.

同様に,弾性周期 0.5sec に対して,表 6-2 に示すように同じく C_B=1.0,0.5,0.3 の3種類の建物について弾塑性地震応答解析を行った.各ケースでのせん断力-水平変形関係を図 6-2 に示す.いずれの場合も降伏は生じず、C_B=1.0 では弾性におさまった.

以上のように,弾塑性解析を実施した結果,平戸 EW 波では,弾性周期 0.3sec 程度および 0.5sec 程度の建物共に Ds が 0.3以上程度あれば殆ど被害は生じない ことが分かった.

		解析ケース			
		Case 1 (C _B =1.0)	Case 2 (C _B =0.5)	Case 3 (C _B =0.3)	
耐力	Fc	3201.33	1600.67	960.40	
(kN)	Fy	9604.00	4802.00	2881.20	
変形	Dc	7.45	3.72	2.23	
(mm)	Dy	44.68	22.34	13.40	

表 6-1 解析パラメータ(T=0.3)

図 6-1 せん断力 - 水平変形関係(T=0.3)

		解析ケース			
		Case 1 (C _B =1.0)	Case 2 (C _B =0.5)	Case 3 (C _B =0.3)	
耐力	Fc	3201.33	1600.67	960.40	
(kN)	Fy	9604.00	4802.00	2881.20	
変形	Dc	20.69	10.34	6.21	
(mm)	Dy	124.12	62.06	37.24	

表 6-2 解析パラメータ(T=0.5)

図 6-2 せん断力 - 水平変形関係(T=0.5)

6.2 FKO001 玄海

FKO001 玄海 NS を対象に, C_B=1.0, 0.5, 0.3 の3種類の建物について弾塑性 地震応答解析を行った.解析では以下の仮定を用いた.弾性周期 0.3sec での解析 パラメータは 6.1 で用いたもの(表 6-1)と同じである。

- ・ 復元力特性は武田モデル
- ・ ひび割れ耐力(Fc)は降伏耐力(Fy)の 1/3
- ・ 降伏時剛性低下率は 0.5
- · 降伏後剛性は初期剛性の 1/1000
- 減衰は瞬間剛性比例型減衰で 5%

・ 建物重量は 980tonf.

各ケースでのせん断力 - 水平変形関係を図 3 に示す.何れにケースも降伏は生じなかった.

同様に,弾性周期 0.5sec に対して,表 6-2 に示すように同じく C_B=1.0,0.5,0.3 の3種類の建物について弾塑性地震応答解析を行った.各ケースでのせん断力
水平変形関係を図 4 に示す.何れのケースも降伏は生じず、C_B=0.3 以外のケースは弾性に止まった。.弾性周期 0.3sec に比べて被害は非常に小さくなっている.

以上のように,弾塑性解析を実施した結果,玄海 NS 波では,弾性周期 0.3sec 程度および 0.5sec 程度の建物共に Ds が 0.3 程度あれば殆ど被害は生じないことが 分かる.

図 3 せん断力 - 水平変形関係(T=0.3)

図 4 せん断力 - 水平変形関係(T=0.5)

7 FKO006 福岡 NS の Wavelet 変換

FKO006 福岡の記録は、地震記録やスペクトルから液状化したことが予測される。その 為、Wavelet 変換により、時間軸で周波数分解を試みる。解析には 8192Step(81.92sec、2¹³) を用いたので、13 ランクまで分解できることとなる。分解には Mother Wavelet として B - Spline を用い、次数は4 とした。

図 5 に分解結果を示す。図から、18 秒付近を境に、それ以前では g2(25Hz~50Hz)が 卓越しているが、それ以降では、g5 および g7 が卓越しており、明らかに周期が伸びている。

Rank	Δt (sec)	Frequency (Hz)
1	0.01	50.00
2	0.02	25.00
3	0.04	12.50
4	0.08	6.25
5	0.16	3.13
6	0.32	1.56
7	0.64	0.78
8	1.28	0.39
9	2.56	0.20
10	5.12	0.10
11	10.24	0.05
12	20.48	0.02
13	40.96	0.01

表 3 各ランクに対する振動数と時間刻み

図 5 FKO006 福岡 NS 波の Wavelet 変換結果

図 5 FKO006 福岡 NS 波の Wavelet 変換結果

8 まとめ